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ABSTRACT: A new mathematical model of thermoelectro
viscoelasticity theory was constructed in the context of a
new consideration of heat conduction with fractional
order. The state space approach developed earlier by Ezzat
was adopted for the solution of a one-dimensional prob-
lem in the presence of heat sources. The Laplace-transform
technique was used. A numerical method was employed
for the inversion of the Laplace transforms. According to

the numerical results and their graphs, a conclusion about
the new theory was constructed. Some comparisons are
shown in figures to estimate the effect of the fractional
order parameter on all of the studied fields. VC 2011 Wiley
Periodicals, Inc. J Appl Polym Sci 124: 2187–2199, 2012
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INTRODUCTION

The linear theory of elasticity is of paramount im-
portance in the stress analysis of steel, which is the
most common engineering structural material. To a
lesser extent, linear elasticity describes the mechani-
cal behavior of the other common solid materials,
for example, concrete, wood, and coal. However, the
theory does not apply to the behavior of many new
synthetic materials of the elastomer and polymer
type, such as poly(methyl methacrylate) (Perspex),
polyethylene, and poly(vinyl chloride).

With the rapid development of polymer science
and the plastics industry, as well as the widespread
use of materials under high temperature in modern
technology and the application of biology and
geology in engineering, the theoretical study and
applications of viscoelastic materials have become
important tasks for solid mechanics.

Linear viscoelasticity remains an important area of
research not only because of the advent and use of
polymers but also because most solids, when sub-
jected to dynamic loading, exhibit viscous effects.1

The stress–strain law for many materials, including
polycrystalline metals and high polymers, can be
approximated by linear viscoelasticity theory.2 The
mechanical model representation of linear viscoelastic

behavior results has been investigated by Gross,3

Staverman and Schwarzl,4 Alfery and Gurnee,5 and
Ferry.6 One can refer to Ilioushin and Pobedria7 for
the formulation of a mathematical theory of thermal
viscoelasticity and for the solutions of some boundary
value problems and to Pobedria8 for coupled prob-
lems in continuum mechanics.
The modification of the heat-conduction equation

from diffusive to a wave type may be affected either
by a microscopic consideration of the phenomenon
of heat transport or in a phenomenological way by
modification of the classical Fourier law of heat con-
duction. The first is due to Cattaneo,9 who obtained
a wave-type heat equation by postulating a new law
of heat conduction to replace the classical Fourier
law. Lord and Shulman10 introduced the theory of
generalized thermoelasticity with one relaxation
time (s0) for the special case of an isotropic body.
This theory was extended by Sherief and Dhaliwal11

to include the anisotropic case. In this theory, a
modified law of heat conduction including both the
heat flux and its time derivative replaces the conven-
tional Fourier’s law. The heat equation associated
with this theory is hyperbolic and, hence, eliminates
the paradox of infinite speeds of propagation inher-
ent in both the uncoupled and coupled theories of
thermoelasticity. Earlier, we investigated12 the prop-
agation of discontinuities of solutions in this theory.
The generalized thermoviscoelasticity models ignor-

ing the relaxation effects of the volume, were estab-
lished by Ezzat et al.13 and Othman at el.14 Among the
theoretical contributions to the subject have been our
proofs of uniqueness theorems under different condi-
tions15 and the boundary element formulation.16 For a
half-space of an electrically conducting viscoelastic
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material, a lot of problems describing interesting phe-
nomena that characterize different theories of general-
ized thermoviscoelasticity have been solved by many
researchers,17–20 among others.

Differential equations of fractional order have
been the focus of many studies because of their fre-
quent appearance in various applications in fluid
mechanics, viscoelasticity, biology, physics, and
engineering. The most important advantage of the use
of fractional differential equations in these and other
applications is their nonlocal properties. It is well
known that the integer-order differential operator is a
local operator but the fractional-order differential
operator is nonlocal. This means that the next state of
a system depends not only on its current state but
also on all of its historical states. This is more realistic,
and it is one reason that fractional calculus has
become more and more popular (see Caputo,21

Podlubny,22 and Mainardi and Gorenflo23).
Although the tools of fractional calculus have

been available and are applicable to various fields of
study, the investigation of the theory of fractional
differential equations was started quite recently by
Caputo.21 Differential equations involving Riemann–
Liouville differential operators of the fractional order
0 < a < 1, appeared to be important in the modeling
of several physical phenomena in Kiryakova24 and,
therefore, seem to deserve independent study of
their theory parallel to the well-known theory of
ordinary differential equations.

Fractional calculus has been used successfully to
modify many existing models of physical processes.
One can state that the whole theory of fractional
derivatives and integrals was established in the sec-
ond half of the 19th century. The first application of
fractional derivatives was given by Abel,25 who
applied fractional calculus to the solution of an
integral equation that arose in the formulation of the
Tautochrone problem.26 The generalization of the con-
cept of derivatives and integrals to a noninteger order
has been subjected to several approaches, and some
various alternative definitions of fractional deriva-
tives have appeared in Oldham and Spanier,27 Miller
and Ross,28 Samko et al.,29 Gorenflo and Mainardi,30

and Hilfer.31 In the last few years, fractional calculus
has been applied successfully in various areas to
modify many existing models of physical processes,
for example, in chemistry, biology, modeling and
identification, electronics, wave propagation, and
viscoelasticity in Caputo and Mainardi,32 Caputo,33

Bagley and Torvik,34 Koeller,35 and Rossikhin and
Shitikova.36 One can refer to Podlubny22 for a survey
of applications of fractional calculus.

Recently, a considerable research effort was
expended to study anomalous diffusion, which was
characterized by the time-fractional diffusion-wave
equation by Kimmich:37

qC ¼ kItr2C; 0 < t � 2 (1)

where q is the density, C is the concentration, k is
the diffusion conductivity, and It is the Riemann–
Liouville fractional integral.
It was introduced as a natural generalization of

the well-known n-fold repeated integral Inf(t), writ-
ten in a convolution-type form by Mainardi and
Gorenflo:23

Itf ðtÞ ¼ 1
CðtÞ

Rt
0

ðt� nÞt�1f ðnÞdn
I0f ðtÞ ¼ f ðtÞ

9=
;0 < t � 2 (2)

where C is the gamma function and t is the time.
According to Kimmich,37 Eq. (1) describes different
cases of diffusion where 0 < t < 1 corresponds to
weak diffusion (subdiffusion), t ¼ 1 corresponds to
normal diffusion, 0 < t < 2 corresponds to strong
diffusion (superdiffusion), and t ¼ 2 corresponds to
ballistic diffusion. It should be noted that the term
diffusion is often used in a more generalized sense,
including in various transport phenomena. Equation
(1) is a mathematical model of a wide range of im-
portant physical phenomena, for example, the sub-
diffusive transport that occurs in widely different
systems ranging from dielectrics and semiconductors
through polymers to fractals, glasses, porous, and
random media. Superdiffusion is comparatively rare
and has been observed in porous glasses, polymer
chains, and biological systems and is the transport
of organic molecules and atomic clusters on the sur-
face. One might expect anomalous heat conduction
in media where anomalous diffusion is observed.
Fujita38 considered the constitutive equation for

the heat flux in the following form:

q ¼ �jIt�1rT; 1 � t � 2 (3)

where q is the heat flux vector, j is the thermal con-
ductivity, and !T is change in the absolute
temperature.
Povstenko39 used the Caputo heat-wave equation

to define the fractional heat-conduction equation in
the following form:

q ¼ �jIt�1rT; 0 < t � 2 (4)

Cattaneo9 introduced a law of heat conduction to
replace the classical Fourier law in the following form:

qþ s0
@q

@t
¼ �jrT (5)

Sherief et al.40 introduced a formula of heat con-
duction and took into account Eq. (7):
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qþ s0
@aq

@ta
¼ �jrT; 0 < a � 1 (6)

where

@a

@ta
f ðx; tÞ ¼

f ðx; tÞ � f ðx; 0Þ a ! 0

Ia�1 @f ðx;tÞ
@t 0 < a < 1

@f ðx;tÞ
@t a ¼ 1

8><
>: (7)

They proved a uniqueness theorem and derived a
reciprocity relation and a variational principle.

In the limit, as a moves toward 1, Eq. (6) is
reduced to the well-known Cattaneo law used by
Lord and Shulman10 to derive the equation of the
generalized theory of thermoelasticity with one
relaxation time. It is known that Lebon et al.41 and
Jou et al.42 showed that the classical entropy derived
with this law, instead of being monotonically
increasing, behaves in an oscillatory way. Strictly
speaking, this result is not incompatible with the
Clausius’ formulation of the second law, which
states that the entropy of the final equilibrium state
must be higher than the entropy of the initial equi-
librium state. However, the nonmonotonic behavior
of the entropy is in contradiction with the local equi-
librium formulation of the second law, which
requires that the entropy production must be posi-
tive everywhere at any time, as Lebon et al.41 During
the last 2 decades, this has become the subject of
many research articles and has resulted in the intro-
duction of what is known now as extended irreversible
thermodynamics. A review can be found in Jou et al.42

Youssef43 introduced another formula of heat con-
duction that took into consideration eqs. (3)–(5):

qþ s0
@q

@t
¼ �jIt�1rT; 0 < t � 2 (8)

A uniqueness has been proven.
We44 introduced two general models of a fractional

heat-conduction law for nonhomogenous anisotropic
elastic solids. Uniqueness and reciprocal theorems
were proven, and the convolutional variational
principle was established and used to prove a
uniqueness theorem with no restriction on the elas-
ticity or thermal conductivity tensors, except symme-
try conditions. The two-temperature dynamic
coupled theory (Lord–Shulman) and fractional
coupled thermoelasticity theory resulted as limit
cases. For fractional thermoelasticity, which does not
involve two temperatures, we45 established the
uniqueness theorem, reciprocal theorems, and convo-
lution principle. The dynamic coupled and Green–
Naghdi thermoelasticity theories resulted as limit
cases. The reciprocity relation, in the case of a quies-
cent initial state, was found to be independent of the
order of differintegration.44,45

Earlier, we46,47 investigated the fractional order theory
of a perfect conducting thermoelastic medium and the
theory of fractional order in electrothermoelasticity.
Thermoelectric devices have many attractive fea-

tures, such as a long life, no moving parts, no noise,
easy maintenance, and high reliability, compared
with conventional fluid-based refrigerators and
power-generation technologies. However, their use
has been limited by the relatively low performance
of current thermoelectric materials. The efficiency of
a thermoelectric material is related to the so-called
dimensionless thermoelectric figure of merit (ZT).
ZT was defined in Goldsmid:48

ZT ¼ r0S
2

j
T (9)

where r0 is the electric conductivity and S is the
Seebeck coefficient.
The best thermoelectric materials that are cur-

rently in devices have a value of ZT � 1.
A related effect (the Peltier effect) was discovered

a few years later by Peltier, who observed that when
an electrical current is passed through the junction
of two dissimilar materials, heat is either absorbed
or rejected at the junction, depending on the direc-
tion of the current. This effect is due to the differ-
ence in the Fermi energies of the two materials. The
absolute temperature (T), S, and Peltier coefficient
(P) are related by the first Thomson relation, as dis-
cussed by Morelli:49

P ¼ ST (10)

In this study, a new model of the time-fractional
derivative of a in the heat-conduction equation was
derived in the context of generalized thermoelectric
elasticity theory. The governing coupled equations
were applied to a problem of an electroconducting
half-space with heat source distribution in the pres-
ence of a transverse magnetic field. Laplace trans-
forms and state space approach techniques (Ezzat50)
were used to obtain the solution. Laplace transforms
were obtained with the complex inversion formula
of the transform, together with Fourier expansion
techniques proposed by Honig and Hirdes.51 The
effects of various physical parameters on various
stress and heat-transfer characteristics are discussed
in detail and are represented graphically.

DERIVATION OF THE FRACTIONAL
HEAT-CONDUCTION EQUATION

Conventional electrothermoelasticity is based on the
principles of the classical theory of heat conductiv-
ity, specifically on the classical Fourier’s law, which
relates q and the conduction current–density vector
(J) to the temperature gradient, as given by52
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q ¼ �jrT þPJ (11)

J ¼ r0 Eþ @u

@t
^ B� SrT

� �
(12)

where E is the total electric field, u is the displace-
ment vector, and B is the magnetic induction vector.
The energy equation in terms of q introduced by
Biot53 is

@

@t
ðqCET þ cToeÞ ¼ �rqþQ; (13)

where CE is the specific heat at a constant strain, c ¼
(3k þ 2l)at (where k and l are Lame’s constants and
at is the coefficient of linear thermal expansion), T0

is the reference temperature, e is the strain deviator
tensor, and Q is the intensity of the applied heat
source per unit volume.

Over the past 3 decades, nonclassical electrother-
moelasticity theories, in which Fourier law [Eq. (11)]
and the heat equation [Eq. (13)] were replaced by more
general equations, have been formulated with Taylor’s
series used to expand q(x,t þ s0) and with terms up to
the first order in s0 retained. The first well-known gen-
eralization of such a type is as follows:54

qþ s0
@q

@t
¼ �jrT þPJ (14)

This generalization leads to the hyperbolic-type
heat-transport equation in the theory of electrother-
moelasticity:55,56

@

@t
1þ s0

@

@t

� �
ðqCET þ cT0eÞ ¼ jr2T �rPJ

þQþ s0
@Q

@t
ð15Þ

In this study, the new fractional Taylor’s series of
time-fractional order a developed by Jumarie57 was
adopted to expand q(x,t þ s0), and with terms up to
a in the thermal s0 retained, we obtained

qðx; tþ s0Þ ¼ qðx; tÞ þ sa0
a!

@aq

@ta
; 0 < a � 1: (16)

From a mathematical viewpoint, Fourier law
[Eq. (11)] in the theory of generalized fractional heat
conduction is given by

qþ sa0
a!

@aq

@ta
¼ �jrT þPJ; 0 < a � 1 (17)

Taking the partial time derivative of a of Eq. (13),
we get58

@aþ1

@taþ1
ðqCET þ cT0eÞ ¼ �r:

@aq

@ta

� �
þ @aQ

@ta
;

0 < a � 1:

(18)

Multiplying Eq. (18) by sa0/a! and adding it to Eq.
(13), we have

@

@t
1þ sa0@

a

a!@ta

� �
ðqCET þ cT0eÞ ¼ �r: qþ sa0

a!
@aq

@ta

� �

þQþ sa0
a!

@aQ

@ta
; 0 < a � 1 ð19Þ

Substituting from Eq. (17), we get

@

@t
1þ sa0

a!
@a

@ta

� �
ðqCET þ cT0eÞ ¼ jr2T

�r:PJ þ 1þ sa0
a!

@a

@ta

� �
Q; 0 < a � 1 ð20Þ

Equation (20) is the generalized energy equation
with fractional derivatives and with s0 taken into
account. Some theories of heat-conduction law fol-
low as limit cases for different values of the parame-
ters a and s0.

Limiting cases

1. In the theory of thermoelasticity
Heat Eq. (20) in the limiting case s0 ¼ 0 trans-
forms to the work of Biot.53

Heat Eq. (20) in the limiting case s0 ¼ 0 and
t ¼ 1 transforms to the work of Povstenko.39

2. In the theory of generalized thermoelasticity
Heat Eq. (20) in the limiting case a ¼ 1 trans-
forms to the work of Lord and Shulman.10

Heat Eq. (20) in the limiting case 0 < a � 1
transforms to the work of Sherief at el.40

Heat Eq. (20) in the limiting case a ¼ 1 and t ¼ 1
transforms to the work of Youssef.43

3. In the theory of electrothermoelasticity
Heat Eq. (20) in the limiting case s0 ¼ 0 trans-
forms to the work of Kaliski and Nowacki.52

Heat Eq. (20) in the limiting case a ¼ 1 trans-
forms to the works of Ezzat and Awad,59

Ezzat et al.,60 and Ezzat and Atef.61

THE PHYSICAL PROBLEM AND STATE SPACE
APPROACH

We consider a conducting thermoelectric viscoelastic
solid of finite r0 occupying the region x � 0, where
the x axis is taken to be perpendicular to the bound-
ing plane of a half-space pointing inwards. A con-
stant magnetic field with components (0, H0, 0),
where Hi represents the magnetic field intensity, per-
meates the medium in the absence of an external
electric field.17 The governing equations for general-
ized thermoelasticity when the thermoelectric

Journal of Applied Polymer Science DOI 10.1002/app
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properties of the material are taken into account con-
sist of the following:

1. The figure of merit at T0 is

ZT0 ¼ r0k
2
0

j
T0 (21)

where k0 is the Seebeck coefficient at T0.
2. The first Thomson relation at T0 is

p0 ¼ k0T0 (22)

where p0 is the Peltier coefficient at T0.
3. The modified Ohm’s law is

Ji ¼ r0ðEi þ l0eijk _ukHj � k0TiÞ (23)

where Ji represents the components of the elec-
tric density vector, l0 is the magnetic perme-
ability and eijk represents the components of
the strain tensor.

4. The equation of motion in the absence of body
forces is

rji;j þ l0eijkJkHj ¼ qui;tt (24)

where rij represents the components of the
stress tensor such that rij ¼ rji, and B is given
by Bi ¼ l0Hi.

5. The constitutive equation8

Sij ¼
Z t

0

Rðt� sÞ @eijðx; sÞ
@s

ds ¼ R
^ðeijÞ; (25)

where Sij represents components of the stress
deviator tensor.

Sij ¼ rij � rkk

3
dij; eij ¼ 1

2
ui;j þ uj;i

� �
; eij

¼ eij � e

3
dij; e ¼ ekk;r ¼ rkk

3
; (26)

where dij is the Kronecker delta function.

r ¼ K0½e� 3aTðT � T0Þ� (27)

where K0 is the bulk modulus and is equal to
k þ (2/3)l.

R(t) is relaxation function given by62

RðtÞ ¼ 2l 1� A �
Z t

0

e�b�tta
��1dt

� �
(28)

where a*, b*, and A* are nondimensional em-
pirical constants. C(a*) is the gamma function:7

0<a�<1; b�>; 0�A�<
b�

Cða�Þ ;RðtÞ > 0;
d

dt
RðtÞ<0

Substituting from Eq. (26) into Eq. (25), we
obtain

rij ¼ R
^

eij � e

3
dij

� �
þ K0edij � cHdij: (29)

where H is a temperature equal to T � T0.
6. The fractional heat equation

1þ sa0
a!

@a

@ta

� �
qCE

@T

@t
þ T0c

@eii
@t

�Q

� �
¼ jT;ii �PJ;i; 0 < a � 1: ð30Þ

In the previous equations, a comma denotes mate-
rial derivatives, and the summation conventions are
used. For the one-dimensional problems, all of the
considered functions depend only on the space vari-
ables x and t and u has components [u(x,t), 0, 0].
Because no external electric field is applied and the
effect of polarization of the ionized medium can be
neglected, it follows that E vanishes identically
inside the medium.17

The components of the electromagnetic induction
vector are given by

Bx ¼ BZ ¼ 0; By ¼ l0H0 ¼ B0 ðconstantÞ

whereas the components of the Lorentz force (Fi)
appearing in Eq. (23) are given by

Fx ¼ �rB2
0 _u; Fy ¼ Fz ¼ 0

Let us introduce the following nondimensional
variables:

x� ¼ c0g0x; u� ¼ c0g0u; t� ¼ c20g0t; s�0 ¼ c20g0s0;

H� ¼ cH
K0

; R� ¼ 2

3K0
R; e ¼ T0c2

q2c20CE
; M ¼ r0B

2
0

K0g0

;

r�
ij ¼

rij

K0
; q�

i ¼
c

qc30jg0

qi; g0 ¼
qCE

j
:

where c0 is the speed of propagation of the isother-
mal elastic waves and is equal to the square root of
K0/q, g0 ¼ qCE/j, and M is the magnetic field pa-
rameter. With these dimensionless variables applied,
eqs. (27)–(30) reduce to the following (with the aster-
isks dropped for convenience):

ðR^ þ 1Þ @
2u

@x2
¼ @2u

@t2
þM

@u

@t
þ @H

@x
; (31)

ð1þ ZT0Þ @
2H
@x2

¼ @

@t
þ sa0

a!
@aþ1

@taþ1

� �
Hþ e

@u

@x

� �

� 1þ sa0
a!

@a

@ta

� �
Q; 0 < a � 1 ð32Þ

r ¼ rxx ¼ ðR^ þ 1Þ @u
@x

�H; (33)
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RðtÞ ¼ 4l
3Ko

1� A�
Z t

0

e�b�tta
��1dt

2
4

3
5;R^ðf ðx; tÞÞ

¼
Z t

0

Rðt� sÞ @f ðx; sÞ
@s

ds (34)

From this point, we consider a heat source of the
form Q ¼ Q0d(x)H(t).

To simplify the algebra, only problems with zero
initial conditions are considered. With the Laplace
transform defined by the following formulas applied63

LfgðtÞg ¼ �gðsÞ ¼ R1
0

e�stgðtÞdt
LfDngðtÞg ¼ snLfgðtÞg n > 0

9=
;; (35)

On both sides of eqs. (31) and (32) and with the
resulting equations written in matrix form

d

dx

�Hðx; sÞ
�uðx; sÞ
�H0ðx; sÞ
�u0ðx; sÞ

8>>><
>>>:

9>>>=
>>>;
¼

0 0 1 0

0 0 0 1

a 0 0 ae

0 asðsþMÞ a 0

8>>><
>>>:

9>>>=
>>>;

�Hðx; sÞ
�uðx; sÞ
�H0ðx; sÞ
�u0ðx; sÞ

8>>><
>>>:

9>>>=
>>>;

�Q0bdðxÞ

0

0

1

0

8>>><
>>>:

9>>>=
>>>;
; ð36Þ

where 0 is the Laplace transform

L R
_ @2u

@x2

� �
¼ s�R

@2�u

@x2
; �RðsÞ ¼ 4l

3sKo
1� A�Cða�Þ

ðsþ b�Þa�
" #

;

a ¼ s

1þ ZTo
1þ sao

a!
sa

� �
;

b ¼ a=s andx ¼ 1
�Rsþ 1

Equation (32) can be rewritten in constricted form as

�G0ðx; sÞ ¼ AðsÞ �Gðx; sÞ þ Bðx; sÞ (37)

where G(x, s) denotes the state vector in the trans-
form domain, whose components consist of the
transformed temperature and displacement and their
gradients.

To solve the system in Eq. (37), we need first to
find the form of the matrix exp[A(s)x].

The characteristic equation of the matrix A(s) has
the form

k4 � ½xsðsþMÞ þ að1þ xeÞ�k2 þ axsðsþMÞ ¼ 0;

(38)

where k is a characteristic root. The Cayley–Hamil-
ton theorem states that the matrix A satisfies its own
characteristic equation in the matrix sense. There-
fore, it follows that

A4 � ½xsðsþMÞ þ að1þ xeÞ�A2 þ axsðsþMÞI ¼ 0:

(39)

Equation (39) shows that A4 and all higher powers
of A can be expressed in terms of A3, A2, A, and I,
the unit matrix of order 4. The matrix exponential
can now be written in the form

exp½Ax� ¼ a0ðx; sÞIþ a1ðx; sÞAðsÞ þ a2ðx; sÞA2ðsÞ
þ a3ðx; sÞA3ðsÞ: (40)

The scalar coefficients of Eq. (40) are now eval-
uated by the replacement of matrix A by its charac-
teristic roots 6k1 and 6k2, which are the roots of the
biquadratic Eq. (38) and satisfy the relations

k21 þ k22 ¼ xsðsþMÞ þ að1þ xeÞ (41a)

k21k
2
2 ¼ axsðsþMÞ (41b)

This leads to the following system of equations:

expð6k1:xÞ ¼ ao6a1k1 þ a2k
2
16a3k

3
1 (42a)

expð6k2:xÞ ¼ ao6a1k2 þ a2k
2
26a3k

3
2 (42b)

By solving the system of linear eqs. (42), we can
determined a0 � a3 (see Appendix A).
Substituting the parameters a0 � a3 into Eq. (40),

computing A2 and A,3 and using eqs. (41a) and
(41b), one can obtain after some lengthy algebraic
manipulations the following:

exp½AðsÞ:x� ¼ Lðx; sÞ ¼ ½‘ijðx; sÞ�; i; j ¼ 1; 2; 3; 4: (43)

where the elements ‘ij(x, s) are given in Appendix B.
In the actual physical problem, the space is

divided into two regions accordingly as x � 0 or x <
0; inside the region 0 � x < 1, the positive
exponential terms, not bounded at infinity, must be
suppressed. Thus, for x � 0, we should replace each
sinh(kx) with �1=2exp(�kx) and each cosh(kx) with
1=2exp(�kx). In the region x � 0, the negative expo-
nentials are suppressed instead.
We now proceed to obtain the solution of the problem

for the region x � 0. The solution for the other region is
obtained by the replacement of each ywith �x.
The formal solution of Eq. (37) can be expressed as

�Gðx; sÞ¼exp½Aðx; sÞx� �Gð0; sÞþ
Zx

0

exp½�AðsÞz�Bðz; sÞdz
0
@

1
A

(44)
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Evaluating the integral in Eq. (40) using the inte-
gral properties of the Dirac d function, we obtain

�Gðx; sÞ ¼ Lðx; sÞx½ �Gð0; sÞ þ nðsÞ� (45)

where

nðsÞ ¼ �Q0b
4s

k1k2þxsðsþMÞ
k1þk2
0
1
x

k1þk2

2
664

3
775

Equation (45) expresses the solution of the prob-
lem in the Laplace transform domain in terms of the
vector n(s) representing the applied heat source and
the vector G(0,s) representing the conditions at the
plane source of heat. To evaluate the components of
this vector, we note first that, because of the symme-
try of the problem, the temperature is a symmetric
of y, whereas the displacement is antisymmetric. It
thus follows that

uð0; tÞ ¼ 0 or �uð0; sÞ ¼ 0 (46)

Gauss’s divergence theorem is now be used to
obtain the thermal condition at the plane source. We
consider a short cylinder of unit base whose axis is
perpendicular to the plane source of heat and whose
bases lie on opposite sides of it.

Taking limits as the height of the cylinder moves
toward zero and noting that there is no heat flux
through the lateral surface, upon using the symme-
try of the temperature field, we get

qð0; tÞ ¼ Q0

2
HðtÞ or �qð0; sÞ ¼ Q0

2s
(47)

With Fourier’s law of heat conduction in the non-
dimensional form, namely

�qðx; sÞ ¼ � 1

b
�H0ðx; sÞ (48)

we obtain the condition

�H0ð0; sÞ ¼ � bQ0

2s
(49)

Equations (46) and (49) give two components of
the vector G(0,s). To obtain the remaining two com-
ponents, we substitute x ¼ 0 on both sides of Eq.
(45) to obtain a system of linear equations whose so-
lution gives

�H0ð0; sÞ ¼ �bQ0½k1k2 þ xsðsþMÞ�
2s k1 k2 ðk1 þ k2Þ (50)

�u0ð0; sÞ ¼ bxQ0

2sðk1 þ k2Þ : (51)

Inserting the values from eqs. (46) and (49)–(51)
into the right-hand side of Eq. (45) and performing
the necessary matrix operations, we obtain the tem-
perature and the displacement component in the fol-
lowing form:

�Hðx; sÞ ¼ � bQ0

2sðk21 þ k22Þ
:

	
k21 � xsðsþMÞ

k1
e6k1x

� k22 � xsðsþMÞ
k2

e6k2x



ð52Þ

�uðx; sÞ ¼ 6bxQ0

2sðk21 � k22Þ
½e6k1x � e6k2x�: (53)

Substituting from eqs. (52) and (53) into Eq. (33),
we get the stress component in the form

�rðx; sÞ ¼ bxðsþMÞQ0

2k1k2ðk21 � k22Þ
½k2e6k1x � k1e

6k2x�: (54)

We can obtain the strain component from Eq. (33)
as

�eðx; sÞ ¼ bxQ0

2sðk21 � k22Þ
½k1e6k1x � k1e

6k2x�: (55)

In the previous equations, the upper (plus) sign
indicates the solution in the region x < 0, whereas
the lower (minus) sign indicates the region x � 0,
respectively.
Those complete the solution in the Laplace trans-

form domain.

INVERSION OF THE LAPLACE TRANSFORM

We now outline the numerical inversion method used
to find the solution in the physical domain. This nu-
merical technique has the advantages that it is easy to
implement (relatively speaking), gives good results,
and converges quickly. Let g(x,s) be the Laplace trans-
form of a function g(x,t). The inversion formula for
Laplace transforms can be written as follows:

gðx; tÞ ¼ 1

2pi

Zcþi1

c�i1

est�gðx; sÞds; (56)

where c is an arbitrary constant greater than all of
the real parts of the singularities of g(x,s).
With s ¼ c þ iy, the previous integral takes the

form

gðx; tÞ ¼ ect

2p

Z1
�1

eity�gðx; cþ iyÞdy: (57)
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Expanding the function h(x,t) ¼ exp(�ct)g(x,t) in a
Fourier series in the interval [0, 2L], we obtain the
approximate formula proposed by Honig and Hirdes:51

gðx; tÞ ¼ g1ðx; tÞ þ ED; (58)

where ED is the discretization error and

g1ðx; tÞ ¼ 1

2
c0ðx; tÞ þ

X1
k¼1

ckðx; tÞ for 0 � t � 2L; (59)

and

ckðx; tÞ ¼ ect

L
Re½eikpt=L�gðx; cþ ikpt=LÞ�; k ¼ 0; 1; 2; . . .

for 0 � t � 2L ð60Þ
where ED can be made arbitrarily small if c is large
enough.51

Because the infinite series in Eq. (59) can be
summed up to a finite number (N) of terms, the
approximate value of g(x,t) becomes

gNðx; tÞ ¼ 1

2
c0ðx; tÞ þ

XN
k¼1

ckðx; tÞ for 0 � t � 2L

(61)

Using the above formula to evaluate g(x,t), we
introduce a truncation error (ET) that must be added
to ED to produce the total approximation error.
Two methods are used to reduce the total error.

First, the Korrecktur method51 is used to reduce ED.
Next, the e algorithm is used to reduce ET and,
hence, to accelerate convergence.
The Korrecktur method uses the following for-

mula to evaluate the function g(x,t):

gðx; tÞ ¼ g1ðx; tÞ � e2cLg1ðx; 2Lþ tÞ þ tþ E0
D

where |E0
D| � |ED|. Thus, the approximate value

of g(x,t) becomes

gNKðx; tÞ ¼ gNðx; tÞ � e�2cLgN0 ðx; 2Lþ tÞ (62)

where N0 is an integer such that N0 < N.
We now describe the e algorithm that is used to

accelerate the convergence of the series in Eq. (61).
Let N be an odd natural number, and let the
following be the sequence of partial sums of a series
in Eq. (61):

smðx; tÞ ¼
Xm
k¼1

ckðx; tÞ

We define the e sequence by e0,m ¼ 0, e1,m ¼ sm, and
epþ1,mþ1 ¼ ep�1,mþ1 þ 1/(ep,mþ1 � ep,m), p ¼ 1, 2, 3, . . ..
It can be shown that the sequence51 e1,1, e3,1, e5,1,

. . . eN,1 converges to g(x,t) þ ED � c0/2 faster than
the sequence of partial sums sm, m ¼ 1, 2, 3, . . ..

TABLE I
Values of the Constants

j ¼ 386 N/Ks
aT ¼ 1.78 � 10�5 K�1

CE ¼ 383.1 m2 s�2 K�1

g0 ¼ 8886.73 s m�2

l ¼ 3.86 � 1010 N m�2

k ¼ 7.76 � 1010 N m�2

q ¼ 8954 kg m�3

K0 ¼ 10.33 � 1010 N m�2

c0 ¼ 3397.1 m s�1

T0 ¼ 293 K
e ¼ 0.0168
l0 ¼ 1.256 � 10�6 Ns2 C�2

s0 ¼ 0.02
B0 ¼ l0H0 ¼ 1 Tesla
a* ¼ 0.5
b* ¼ 0.05
A* ¼ 0.106

Figure 1 Dependence of the temperature on the distance for different values of a.
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The actual procedure used to invert the Laplace
transform consists of the use of Eq. (62) together
with the e algorithm. The values of c and L are cho-
sen according to the criteria outlined in Honig and
Hirdes.51

NUMERICAL RESULTS AND DISCUSSION

Copper material was chosen for purposes of numeri-
cal evaluations. The constants of the problem used
are shown in Table I.64

The investigation of the effect of a on the thermo-
electric material with heat source distribution in the
presence of a magnetic field was carried out in
the preceding sections. The computations were
performed for a value of time, namely, t ¼ 0.1. The
numerical technique outlined previously was used
to obtain temperature, displacement, stress, and

strain. The results are represented graphically at dif-
ferent positions of x in Figures 1–8. In these figures,
we noticed the difference in all functions for the value
of a (0 < a � 1), where the case of a ¼ 1 (normal con-
ductivity) indicates the old situation and the case 0 <
a < 1 (weak conductivity) indicates the new theory.
For a normal conductivity, a ¼ 1, the results coincided
with all of the previous results of applications that
were taken in the context of generalized thermoelas-
ticity in the absence of the effects of thermoelectric
properties on the various fields.
In Figures 1–4, which exhibit the space variation

of the temperature, displacement, strain, and stress
fields at different values of a, we observed the
following:

• The fields were continuous functions for differ-
ent values of a (0 < a < 1).

Figure 2 Dependence of the displacement on the distance for different values of a.

Figure 3 Dependence of the stress on the distance for different values of a.
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• The fractional order a had a significant effect on
the fields.

• The waves reached a steady state depending on
the value of the fractional orders a.

• The curves were smoother in the case where
0 < a < 1.

• The waves cut the x axis more rapidly when
a ¼ 1 than when 0 < a < 1.

• Figures 1 and 3 display the temperature and
stress distributions for the wide range 0 � x � 1.4
at a value of time t of 1.0 and for different values
of the differential a (0 < a < 1). We noticed that
for a wide range of 0 � x < 0.3, the increasing
value of the parameter a caused decreases in the
temperature and magnitude of stress, whereas
through the interval 0.3 � x � 1.4, the decreasing
value of the parameter a caused decreases in the
temperature and magnitude of stress.

• In Figures 2 and 4, the displacement and the
strain fields show the same behavior as the tem-
perature and stress fields, except in the wide
range of x.

• Figures 5–8 show the space variation of the tem-
perature, displacement, strain, and stress fields
at different values of ZT0 (1.0, 0.5, and 0.1). The
important phenomenon observed in these fig-
ures was that the effects of ZT0 on the entire
fields were identically the same as the effects of
the introduced fractional order on the corre-
sponding fields.

CONCLUDING REMARKS

• The main goal of this work was to introduce a
new mathematical model for the Fourier law of

Figure 5 Dependence of the temperature on the distance for different values of ZT0.

Figure 4 Dependence of the temperature on the distance for different values of a.
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heat conduction with time-fractional order and
to include the thermoelectric ZT0. This model
will enable us to improve the efficiency of a
thermoelectric material ZT0. It is known that to
achieve a high thermoelectric material ZT0, one
requires a low thermal conductivity.46 This can
occur for small values of a.

• Previously, the discontinuity of the stress distri-
bution was a critical situation, and no one has
explained the reason physically, whereas in the
context of the new theory of thermoviscoelastic-
ity with fractional order heat transfer, the stress
function is continuous.

• This article indicates that the generalized theory
of thermoelectric viscoelasticity of fractional
order heat transfer describes the behavior of the
particles of an elastic body more realistically
than the theory of generalized thermoelasticity
with integer order.

• According to this new theory, we have to con-
struct a new classification for materials accord-
ing to their fractional parameter a, where this
parameter becomes a new indicator of a materi-
al’s ability to conduct heat under the effect of
thermoelectric properties.

• The results provide a motivation to investigate
conducting thermoelectric materials as a new
class of applicable thermoelectric viscoelastic
materials; these materials include beryllium,
magnesium, calcium, barium, and steel.

• To the best of our knowledge, the consequent
thermoelectric ZT0 of all of the iodine-doped
copolymer with the stretch treatment shows one
of the best thermoelectric performances among
conducting polymers ever reported; this is com-
parable with that of an inorganic thermoelectric
material, such as b-FeSi2, as reported by Hirosh-
ige et al.65

Figure 6 Dependence of the displacement on the distance for different values of ZT0.

Figure 7 Dependence of the stress on the distance for different values of ZT0.
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APPENDIX A

a0 ¼ k21 cosh k2x� k22 cosh k1x

k21 � k22
; a1

¼ k31 sinh k2x� k32 sinh k1x

k1k2 k21 � k22
� �

a2 ¼ cosh k1x� cosh k2x

k21 � k22
; a3 ¼ k2 sinh k1x� k1 sinh k2x

k1k2 k21 � k22
� �

APPENDIX B

‘11 ¼
k21 � a
� �

cosh k2x� k22 � a
� �

cosh k1x

k21 � k22
; ‘12

¼ aexs sþMð Þ k2 sinh k1x� k1 sinh k2x

k1k2 k21 � k22
� �

" #

‘13 ¼
k2½k21 � xsðsþMÞ� sinh k1x� k1½k22�xsðsþMÞ� sinh k2x

k1k2 k21 � k22
� �

‘14 ¼ ae
cosh k1x� cosh k2x

k21 � k22

	 

; ‘21

¼ a
k2 sinh k1x� k1 sinh k2x

k1k2 k21 � k22
� �

" #

‘22 ¼
½k21 � xsðsþMÞ� cosh k2x� ½k22 � xsðsþMÞ� cosh k1x

k21 � k22

‘23 ¼ cosh k1x� cosh k2x

k21 � k22
; ‘24

¼ k2ðk21 � aÞ sinh k1x� k1ðk22 � aÞ sinh k2x

k1k2 k21 � k22
� �

‘31 ¼

a
k2½k21 � xsðsþMÞ� sinh k1x� k1½k22 � xsÞðsþMÞ� sinh k2x

k1k2 k21 � k22
� �

( )

‘32 ¼ aexs sþMð Þ cosh k1x� cosh k2x

k21 � k22

	 

; ‘33

¼ ½k21�xsðsþMÞ� cosh k1x�½k22�xsðsþMÞ� cosh k2x

k21 � k22

‘34 ¼ ae
k1 sinh k1x� k2 sinh k2x

k21 � k22

	 

;

‘41 ¼ a
cosh k1x� cosh k2x

k21 � k22

	 

;

‘42¼xsðsþMÞ k2ðk
2
1 � aÞ sinh k1x� k1ðk22 � aÞ sinh k2x

k1k2ðk21 � k22Þ
	 


‘43 ¼ k1 sinh k1x� k2 sinh k2x

k21 � k22
; ‘44

¼ ðk21 � aÞ cosh k1x� ðk22 � aÞ cosh k2x

k21 � k22
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